Sendt: 25 December 2009 kl. 15:58 | IP-adresse registreret
|
|
|
jazzman skrev:
Her er det forklaret i grafisk form. Olson´s forsøg er klassisk - og det passer. Amar.
|
|
|
Hej jazzman
Såvidt jeg kan se er nr 1, SPHERE, den bedste løsning (efterfulgt af den sidste) men tegningen har jeg måske ikke helt forstået, er det også en flad skive, ligesom min, men hvor enheden sidder langt udenfor centeraksen, eller er det en rund kugle ?
Den sidste "Truncated pyramid on parallelepiped", er måske lettere at udføre, men der mangler lidt mål, eller beskrivelse af forholdet mellem de forskellige mål.
Parallelepiped is a prism, bases of which are parallelograms. So, a parallelepiped has six faces and all of them are parallelograms. Opposite faces are two by two equal and parallel. A parallelepiped has four diagonals; they all intersect in the one point and they are divided in it into two. If four lateral faces of parallelepiped are rectangles, it is called a right parallelepiped. A right parallelepiped, all six faces of which are rectangles, is called a right-angled parallelepiped. A diagonal of right-angled parallelepiped d and its edges a, b, c are tied by the relation: d 2 = a 2+ b 2 + c 2 . A right-angled parallelepiped, all faces of which are squares, is called a cube. All edges of a cube are equal.
Mere her
http://books.google.dk/books?id=DSHSqWQXm3oC&pg=PA243&am p;am p;lpg=PA243&dq=Truncated+pyramid+on+parallelepiped+louds peaker&source=bl&ots=o_NOGNHE8J&sig=hdu5T5h9KipW MrD_kvgEcIoN7Hc&hl=da&ei=dc80S9GnJY3d-QbGiuyuCg& sa=X&oi=book_result&ct=result&resnum=3&ved=0 CBwQ6AEwAg#v=onepage&q=Truncated%20pyramid%20on%20parall elepiped%20loudspeaker&f=false
Øhh, jeg fatter FISK.
|